Branch - 01: 2nd Cross, 2nd Main, hamundeshwari Temple Road, Ishadranma Circle, Ward No 18, Extension, Tumkur 572101

Long term, Weekend and Regular NEET with separate PG/ Hostel for Boys and Girls Ph: 9740800250 / 7022308027 Head Office: #141 3rd Main, 1st Block, Kuvempu Nagar, Tumkur-572103

NEET MODEL EXAM -01

DATE: 25 - 07 - 2021

TIME: 10.15 AM - 1.15 PM

DURATION: 3. 00 HOURS

MAX MARKS: 720

Register Number: _____

Name of the candidate: _____

IMPORTANT INSTRUCTIONS

The exam is of 3 hours duration and the exam booklet contains 180 questions. Each question carries FOUR (04) marks. For each correct response, the candidate will be awarded FOUR (04) marks. For each incorrect response, ONE (01) mark will be deducted from the total scores. The maximum marks are 720. No marks will be deducted for unattempted questions.

2. Do not make any stray marks on the OMR Sheet.

3. Do not write your Register Number anywhere else except in the specified space in the Exam Booklet/ OMR Sheet.

4. Use of Electronic/Manual calculator, log tables or other electronic gadgets is strictly prohibited.

5. The candidate should write the correct Register Number in the OMR sheet, failing which the OMR will not be evaluated.

ALL THE BEST

		TOPICS OF THE TEST			
	BIOLOGY	THE LIVING WORLD AND BIOLOGICAL CLASSIFICATION			
	PHYSICS	PHYSICAL WORLD			
	CHEMISTRY	SOME BASIC CONCEPTS OF CHEMISTRY			
		PHY PHY	<u>'SICS</u>		
1.	A scientific way of d	loing things involve	1. Dispersion of light		
	2 Collecting data	blem	2. Reflection of light		
	2. Concerning data 3. Hypothesizing a pr	ossible theory	4. Scattering of light		
	4. All of the above	ssible theory	+. Seattering of right		
			9 Louis de – Broglie is credited for his work on		
2	The scientific princi	ple involved in production of	1. Theory of relativity		
	ultra high magnetic	field is	2. Electromagnetic theory		
	1. Super conductivity	·	3. Matter waves		
	2. Digital logic		4. Law of distribution of velocities		
	3. Pho <mark>toelectric</mark> effec	t			
	4. Laws of thermody	namics	10 Madam Marie Curie won Nobel Prize twice		
3	Correct statement	related to duly varified and	1 Physics and chemistry 2 Chemistry only		
5	dependable facts o	f a natural phenomenon is	3 Physics only 4 Biology only		
	called	a natural phenomenon is	1. Diology only		
	1. Law 2.	Theory	11 Which of the following is true regarding the		
	3. Hypothesis 4.	None of these	physical science?		
	21		1. They deal with non – living things		
4	Concept of natural	phenomenon widely accepted	2. The study of matter are conducted at atomic or		
	after due verifi <mark>cati</mark>	ion and experimentation is	ionic levels		
	called		3. Both 1 & 2		
	1. Hypothesis	2. Law	4. None of these		
	3. Theory	4. None of these			
_		N111	12 The man who is known as the Father of		
3	The man who has	won Nobel prize twice in	Experimental Physics is		
	1 Finstein 2	Bardeen	3 Galilao 4 Butherford		
	3 Heisenberg 4	Faraday	5. Gameo 4. Rumenold		
	s. Heisenberg	T uruduy	13 The person who has been awarded the title of		
6	Prof. Albert Einstei	n got Noble Prize in physics	the Father of Physics of 20 th century is		
	for his work on		1. Madame Curie 2. Sir C. V. Raman		
	1. Special theory of re	elativity	3. Neils Bohr 4. Albert Einstein		
	2. General theory of r	elativity			
	3. Photoelectric effec	t	14 In Rutherford alpha particle scattering		
	4. Theory of specific	heats	experiment as shown in given figure, A and B		
_	XX71 · 1 · 0 · 11 · · · · ·		refer to		
7	Which of the follow	ing is wrongly matched?	Lead Flashol		
	1. Darometer – Pressi 2. Lactomator Mills	lie	Microscope		
	2. Lacioniciel – Wilk	harges			
	4 Humidity – Calori	meter	A B Screen		
	. Humany Caloffi		Scattering		
8	C.V. Raman got No	bel Prize for his experiment	₩ [™] B		
	on	pp	1. Polonium sample and aluminium foil		
			2		

www.vagusneetacademy.com

Ph: 9740800250

	2. Polonium sample and 3. Uranium sample and g	gold foil old foil luminium foil		1. Nuclear force2. Gravitational force3. Electromagnetic force4. None of these
15 '	The branch of science	which deals with noture	24	Classical physics mainly deals with
15	and natural nhanoman	which deals with hature		2 Macroscopic phenomena
	1 Sociology	2 Biology		3 Both of the above
	3. Civics	4. Physics		4. None of the above
16	Who gave general theor	ry of relativity?	25	Microscopic domain includes
	1. Einstein	2. Marconil		1. Atomic theory 2. Molecular theory
•	3. Ampere	4. Newton		3. Nuclear theory 4. All of the above
17	Who discovered X – ray	vs?	26	Who discovered cosmic radiations?
	1. Chadwick	2. Roentgen		1. Curie 2. Hubble
	3. Thomson	4. Madam Curie		3. P.M.S. Brackett 4. Maxwell
18 '	The f <mark>ield of w</mark> ork of S. (Chandrasekhar is	27	Who gave Universal Law of Gravitation?
	1. Theory of black hole	2. Cosmic rays		1. Einstein2. Sir Issac Newton
- /	3. Theory of relativity	4. X – rays		3. J.D. Van der Waals 4. Galileo
19 '	Two India <mark>n born</mark> ph	<mark>ysicis</mark> ts who have been	28	What is the relative magnitude of
:	awarded Nobel Prize in Physics are			electromagnetic force with respect to strong
	1. H.J. Bhabha and APJ	Kalam		nuclear forces?
	2. C.V. Raman and S. Ch	andrasekhar		1. 10^{-38} 2. 10^{-13}
•	3. J.C. Bose and M.N. Sa	ina habba		3. 10 ⁻³² 4. 10 ⁻²
4	4. S. N. Dose and H. J. D	naona	20	
20	Which of the following	has infinite range ?	29	1 C V Reman
_	1. Gravitational force	instantie runge		2 Hess 4 W I Bragg
	2. Electromagnetic force			J. Hess 4. W. L. Diagg
	3. Strong nuclear force		30	Which scientific principle is steam engine based
4	4. Both 1 & 2		00	on?
				1. Motion of charged particles in electric and
21	Which of the f <mark>ollowing</mark>	is the correct decreasing		magnetic field
(order of the strength	ns of four fundamental		2. Newton's Laws of motion
1	forces of nature?			3. Thermodynamics
	1. Electromagnetic for	ce>weak nuclear force>		4. Propagation of electromagnetic waves
	2 Strong nuclear	force>weak nuclear	21	
•	force>electromagnetic fo	rce>gravitational force	31	Who gave theory of relativity?
,	3 Gravitational	force>electromagnetic		1. Ellistelli 2. C.D Alideisoli 3. Huygens 4. Newton
1	force>strong nuclear forc	e>weak nuclear force		5. Huygens 4. Newton
4	4. Strong nuclear	force>electromagnetic	32	Who proposed the wave theory of light?
į	force>weak nuclear force	e>gravitational force	54	1 G P Thomson 2 Huygens
		-		3. M. Planck 4. Maxwell
22 '	The exchange particles	for the electromagnetic		
t	force are		33	Which scientific principle is 'electric generator'
	1. Gravitons	2. Gluons		based on?
•	3. Photons	4. Mesons		1. Bernoullis's principle
<u>.</u>	XX71.1.1 .041.0.11.1			2. Thermodynamics
23	which of the following	is the weakest force?		3. Faraday's law of electromagnetic induction

4. Propagation of elect	romagnetic waves	4. Quantum statics
34 Name one of the mo	ost important contributions	44 Name the contribution made by the scientist
of Albert Einstein	F	J.C. Maxwell
1. Theory of relativity		1. Electromagnetic theory
2. Molecular Spectra		2. Quantum theory
3. Universal law of gra	viton	3 Relativistic theory of electron
4. Scattering of light		4. Quantum statics
35 Electron was discover	red by	45 Name the contribution made by the scientist
1. J. J. Thomson	2. Bohr	Paul Dirac
3. Ruther ford	4. Newton	 Electromagnetic theory Quantum theory
36 Which scientist reco	eived Nobel Prize for his	3. Relativistic theory of electron
work on Molecula	ar spectra?	4. Quantum statics
1. Einstein	2. Newton	
3. C.V. Raman	4. Ruther ford	CHEMISTRY
		46. 0.92g of Ag_2CO_3 is heated strongly beyond
37 Neutron was discover	red by	melting point. After heating the amount of residue
1. Chadwick	2. Bohr	is
3. Rutherford	4. None of these	1. 0.36g 2. 0.39g
		3 . 0.72g 4 . 0.77g
38 Name that branch o	f science which deals with	
the study of stars	2 Gualance	47 The volume of neon gas in cm^3 at STP
1. Astronomy	2. Geology	having the same number of atoms as that present
3. Quantum theory	4. None of these	in 800 mg of Ca is (At. Mass; Ca = $40 g mol^{-1}$,
39 Name the branch of s	science which deals with the	$Ne = 20 \ g \ mol^{-1}$)
study of Earth		1 56 2 896
1. Astronomy	2. Geology	
3. Quantum theory	4. None of these	5.221
		48 How many molecules of CO ₂ are formed
40 Which is strongest for	rce?	when one million of 100% muse C_{2}
1. Gravitational force		when one minigram of 100% pure $CaCO_3$ is
2. Strong nuclear force		treated with excess hydrochloric acid?
3. Weak nuclear force		1. 6.023×10^{23} 2. 6.023×10^{21}
4. Electromagnetic for	ce	$3. \ 6.023 \times 10^{20} \qquad 4. \ 6.023 \times 10^{18}$
41 Name the scientist	whose filed of work was	49 Arrange the following in the order of
'elasticity'		increasing mass (atomic mass:
1. S.N. Bose	2. J.C. Maxwell	O = 16, Cu = 63, N = 14)
3. Robert Hook	4. Paul Dirac	I. One atom of oxygen
		II. One atom of nitrogen
42 Transistor was discov	vered by	III. 1×10^{-10} mole of oxygen
1. John Bardeen	2. C.H. Townes	IV. 1×10^{-10} mole of copper
3. M.N. Saha	4. C.V. Raman	1. II <i<iii<iv 2.="" i<ii<iv<="" td=""></i<iii<iv>
12 Name the contribution	on made by the gainstict S	3. III <ii<iv<i 4.="" iv<ii<iii<i<="" td=""></ii<iv<i>
45 Name the contribution	on made by the scientist S.	
1. Electromagnetic the	ory	50 The mass of $CaCO_3$ required to reach
2 Quantum theory	ory	completely with 20mL of 1.0 M HCl as per the
2. Quantum meory of 3 Relativistic theory of	felectron	
J. Iterativistic ulcory 0		1

reaction, $CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$ is	58 If 1.5 moles of oxygen combines with Al to form		
(At. Wt. $Ca = 40, C = 12, O = 16$)	Al_2O_3 , the mass of Al in g [Atomic mass of		
1. 1 g 2. 2g	Al = 27] used in the reaction is		
3. 10g 4. 20g	1. 2.7 2. 54		
	3. 40.5 4. 81		
51 Which one of the following has maximum			
number of molecules?	59 One kilogram of a sea water sample contains 6		
1. $16 g \text{ of } O_2$ 2. $16 g \text{ of } NO_2$	mg of dissolved O_2 . The concentration of O_2 in		
3. 4 g of N_2 4. 32 of N_2	the sample in ppm is		
	1.0.6 $2.6.0$ 4.160		
52 The density of 2.0 M solution of a solute is	3. 60.0 4. 16.0		
$1.2 g mL^{-1}$. If the molecular mass of the solute is	60 Which one of the following sets of compounds		
$100 g mL^{-1}$, then the molality of the solution is	correctly illustrates the law of reciprocal		
1. 2.0 m 2. 1.2 m	proportions?		
3. 1.0 m 4. 0.6 m	1. P_2O_2 , PH_2 , H_2O_2 2. P_2O_5 , PH_2 , H_2O_2		
	$\frac{1}{3} \times \frac{1}{3} \times \frac{1}{2} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{2} \times \frac{1}{3} \times \frac{1}$		
53 The vapor density of a mixture containing	5. N ₂ 0 ₅ , N ₁₃ , N ₂ 0 4. N ₂ 0, N ₁₃ , N ₂ 0		
NO_2 and N_2O_4 is 27.6. Mole fraction of NO_2 in	61,20.0 kg of N and 3.0 kg of H are mixed to		
the mixture is	of 20.0 kg of $N_{2(g)}$ and 5.0 kg of $M_{2(g)}$ are mixed to		
1. 0.8 2. 0.6	produce $NH_{3(g)}$. The amount of $NH_{3(g)}$ formed is		
3. 0.4 4. 0.2	1. 17 kg 2. 34 kg		
54 25 of an article of a match is converted to	3. 20 kg 4. 3 kg		
st sg of an oxide of a metal is converted to chloride completely and it violded 5 g of chloride			
The equivalent weight of the metal is	62 Which one of the following is the highest?		
1. 3.325 2. 33.25	1. 0.2 mole of hydrogen gas $2 \times 6.022 \times 10^{22}$ melasula set faitures a		
3. 12 4. 20	2. $6.023 \times 10^{\circ}$ molecules of mirogen 3. 0.1 g of silver		
	4 0.1 mole of oxygen gas		
55 1 ml of gaseous aliphatic compound $C_n H_{3n} O_m$	ii oir more or on ygen gas		
is completely burnt in an excess of O_2 and closed	63 The molecular weight of O_2 and SO_2 are 32 and		
to room temperature. The contraction in volume	64 respectively At $15^{\circ}C$ and $150 mm Hg$		
is	proserve one litre O contains (N ² melocules		
(1 3 1) (1 1 1)	pressure, one intre O_2 contains in molecules.		
1. $\left(1 + \frac{n}{4} - \frac{-m}{2}\right)$ 2. $\left(1 + \frac{n}{4} - \frac{-m}{4}\right)$	The number of molecules in two litres of SO_2		
$\begin{pmatrix} 3 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 3 \end{pmatrix}$	under the same conditions of temperature and		
3. $\left 1+\frac{\pi}{4}n-\frac{\pi}{4}m\right $ 4. $\left 1+\frac{\pi}{2}n-\frac{\pi}{4}m\right $	pressure will be		
	$\begin{array}{cccc} 1. \text{ N}/2 & 2. \text{ IN} \\ 2. \text{ 2N} & 4 \text{ N} \end{array}$		
56 A gas mixture contains Q and N in the	3. 21N 4.IN		
so A gas maxime contains O_2 and N_2 in the	64 The percentage weight of Zn in white vitriol		
of molecules is	$[ZnSO_{}7H_{.}O]$ is approximately equal to		
1.1:8 2.1:4	(7n - 65, 7 - 22, 0) - 16, 0, 11 - 1)		
3.3:16 4.7:32	(2n = 0.5, Z = 52, U = 10 & H = 1)		
	1. 33.65% 2. 32.56%		
57 The number of moles of oxygen obtained by	3. 23.05% 4. 22.65%		
the electrolytic decomposition of 108g water is	65 The maximum number of molecules are present		
1. 2.5 2. 3	in		
4. /.2	_		

	Al = 27] used in the reaction is				
	1. 2.7 2. 54				
	3. 40.5 4. 81				
0	One kilogram of a sea water sample contains 6				
,	mg of dissolved Q . The concentration of Q in				
	the completion promise				
	1.06 2.60				
	3. 60.0 4. 16.0				
0	Which one of the following sets of compounds				
	correctly illustrates the law of reciprocal				
	proportions?				
	1. P_2O_3 , PH_3 , H_2O 2. P_2O_5 , PH_3 , H_2O				
	3. N_2O_5 , NH_3 , H_2O 4. N_2O , NH_3 , H_2O				
1	20.0 kg of $N_{2(g)}$ and 3.0 kg of $H_{2(g)}$ are mixed to				
	produce <i>NH</i>				
	produce $\operatorname{Arr}_{3(g)}$ and $\operatorname{Arr}_{3(g)}$ for including 2 24 kg				
	1. 1 / Kg 2. 34 Kg 2. 34 kg				
	J. 20 kg 4. 5 kg				
2	Which one of the following is the highest?				
	1. 0.2 mole of hydrogen gas				
	2. 6.023×10^{22} molecules of nitrogen				
	3. 0.1 g of silver				
	4. 0.1 mole of oxygen gas				
_					
3	The molecular weight of O_2 and SO_2 are 32 and				
	64 respectively. At $15^{\circ}C$ and $150 mm Hg$				
	pressure, one litre O_2 contains 'N' molecules.				
	The number of molecules in two litres of SO_2				
	under the same conditions of temperature and				
	pressure will be				
	1. N/2 2. 1N				
	3. 2N 4.N				
1	The nercontage weight of 7n in white vitual				
•	The belleniage weight of Lif in white villion				

- $[ZnSO_4.7H_2O]$ is approximately equal to (Zn = 65, Z = 32, O = 16 & H = 1)1.33.65% 2.32.56% 3.23.65% 4.22.65%
- The maximum number of molecules are present in
 - 1. 15L of H_2 gas at STP

- 2.5 L of N_2 gas at STP
- 3. 0.5 g of H_2 gas
- 4. 10 g of O_2 gas

66 Number of atoms in 558.5 gram Fe (At. Wt. of

 $Fe = 55.85 g mol^{-1}$) is

- 1. Twice that in 60 g carbon
- 2. 6.023×10^{11}
- 3. Half that in 8 g *He*
- 4. $558.5 \times 6.023 \times 10^{23}$
- 67 Liquid benzene (C_6H_6) burns in oxygen according to the equation $2C_6H_6(l)+15O_2(g) \rightarrow 12CO_2(g)+6H_2O(g)$

How many litres of O_2 at STP are needed to complete the combustion of 39g of liquid benzene? (Mol. wt. of $O_2 = 32, C_6H_6 = 78$)

1. 74L	2. 11.2 L
3. 22.4L	4. 84L

68 In a compound C, H and N atoms are present in 9:1:3.5 by weight Molecular weight of compound is 108. Molecular formula of compound is

1.	$C_2H_6N_2$	2.	C_3H_4N
3.	$C_{6}H_{8}N_{2}$	4.	$C_9H_{12}N_3$

69 For the reaction $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$, the volume of carbon monoxide required to reduce one mole of ferric oxide is

l.	$67.2 dm^3$	2.	$11.2dm^3$
3.	$22.4dm^3$	4.	$44.8 dm^3$

70 10 moles SO_2 and 15 moles O_2 were allowed to react over a suitable catalyst. 8 moles of SO_3 were formed. The remaining moles of SO_2 and

O_2 respectively are

1. 2 moles, 11 moles	2. 2 moles, 8 moles
3. 4 moles, 5 moles	4.8 moles, 2 moles

71 100 $ml O_2$ and H_2 are kept at same temperature and pressure. What is true about their number of molecules?

1. $N_{O_2} > N_{H_2}$

2. $N_{O_2} < N_{H_2}$

- 3. $N_{O_2} = N_{H_2}$ 4. $N_{O_2} + N_{H_2} = 1$ mole
- 72 The weight of one molecule of a compound $C_{60}H_{122}$ is
 - 1. 1.2×10^{-20} gram2. 1.4×10^{-21} gram3. 5.025×10^{23} gram4. 6.023×10^{23} gram
- **73** How many moles of magnesium phosphate, $Mg_3(PO_4)_2$ will contain 0.25 mole of oxygen atoms? 1. 1.25×10^{-2} 2. 2.5×10^{-2}
 - 4. 3.125×10^{-2}
- 74 The number of moles of $KMnO_4$ reduced by one mole of *KI* in alkaline medium is
 - 1. One2. Two3. Five4. One fifth
- 75 If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will
 - 1. Decrease twice

3. 0.02

- 2. Increase two fold
- 3. Remain unchanged
- 4. Be a function of the molecular mass of the substance
- 76 A gaseous hydrocarbon gives up combustion 0.72 g of water and 3.08 g of CO_2 . The empirical formula of the hydrocarbon is
 - 1. C_2H_4 2. C_3H_4

 3. C_6H_5 4. C_7H_8
- 77 If 0.5 mol of $BaCl_2$ is mixed with 0.2 mole of Na_3PO_4 , find the maximum amount of $Ba_3(PO_4)_2$, that can be formed
 - 1. 1 mole
 2. 0.5 mole

 3. 0.1 mole
 4. 0.01 mole
- 78 Boron has two stable isotopes, ${}^{10}B(19\%)$ and

¹¹B(81%). Average atomic weight for boron in the periodic table is 1. 10.81 2. 10.2

1. 10.01	∠.	10.2
3. 11.2	4.	10.0

79	The vapour density of gas is 11.2, then 11.2 g of this gas at N.T.P. will occupy a volume	87 The number of atoms in 0.1 mol of a triatomic gas is $(N_A = 6.02 \times 10^{23} mol^{-1})$
	3. 11.2mL 4. 22.4mL	1. 6.026×10^{22} 2. 1.806×10^{23} 3. 3.600×10^{23} 4. 1.800×10^{22}
80	The mass of 1 mole of electrons is	
	1. $9.1 \times 10^{-28} g$ 2. $1.008 mg$	88 What is the weight of oxygen required of for the
	$4.01 \times 10^{-27} \mathrm{g}$	complete combustion of 2.8 kg of ethylene?
	5. 0.55mg 4. 5.1×10 g	1.2.8 kg $2.6.4 kg$
81	10g of hydrogen and 64 g of ovygen were filled	5. 9.0 kg 4. 90kg
	in a steel vessel and exploded. Amount of water	89 6×10^{20} molecules of CO are removed from 220
	produced in this reaction will be	0° 0° 10° molecules of 0° 0° are removed from 220
	1. 3 mol 2. 4 mol	milligram of CO_2 . What are the remaining
	3. 1 mol 4. 2 mol	moles of CO ₂
		1. 5×10^{-3} 2. 4×10^{-3}
82	In the reaction	3. 6×10^{-3} 4. 3×10^{-3}
	$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(l)$ when 1	
	mole of ammonia and 1 mole of O_2 are made to	90 Haemoglobin contains 0.334% of iron by weight.
3	react to completion	The molecular weight of haemoglobin is
	1. 1.0 mole of H_2O is produced	approximately 67200. The number of iron atoms
	2 1.0 mole of NO will be produced	(at. wt. of Fe is 50) present in one molecule of
	3. All the oxygen will be consumed	
	4. All the ammonia will be consumed	
		BIOLOGY
83	Experimentally it was found that a metal oxide	91. Which of the following is less general in
	has formula $M_{0.98}O$. Metal M, present as M^{2+}	characters as compared to genus?
	and M^{3+} in its oxide. Fraction of the metal	1. Species 2. Division
	which exists as M^{3+} would be	3. Class 4. Family
	1. 7.01% 2. 4.08%	92 Mixotrophic mode of nutrition is a characteristic
	3. 6.05% 4. 5.08%	of which group?
		1. Diatoms 2. Euglenoids
84	Number of g of oxygen in 32.2g Na_2SO_4 .10 H_2O	3. Desmids 4. Dinoflagellates
	is	
	1. 20.8 2. 2.24	93 Find correct sequence of sexual cycle in
	5. 22.4 4. 2.08	Agaricus w.r.t following terms
85	How many atoms are contained in one mole of	A. Karyogalily D. Melosis C. Plasmogamy D. Dikaryonhasa
	sucrose $(C H Q)$?	1 C D A B 2 C A B D
	$1 20 (02 10^{23}) (1)$	3. D.C.B.A 4. A.B.C.D
	1. $20 \times 6.02 \times 10^{-4}$ atoms/mol	
	2. $45 \times 6.02 \times 10^{-3}$ atoms/mol	94 Group of organisms that closely resemble each
	3. $5 \times 6.02 \times 10^{-1}$ atoms/mol	other & freely interbreed in nature, constitute a
	4. None of these	1. Species 2. Genus
86	If density of 3 M of $NaCl$ is $1.2 a m l^{-1}$ the	3. Family 4. Taxon
00	modelity of the same solution will be	05 A Agovuel reproduction is commonly through
	1.3 m 2.2.79m	the formation of conidia in ascomycetes
	3. 1.75m 4. 2.50m	B. Sexual spores are exogenous, stalked and
		diploid in ascomycetes
		7

C. Fruiting body is called ascocarp in sac fungi

- 1. A & B are incorrect 2. B & C are in correct
- 3. A & C are correct4. B & C are correct
- 96 Which of the following statements regarding growth is false?

1. Increase in mass and increase in number of individual s are twin characteristics of growth

2. In plants, growth by cell division is seen only up to certain stage

3. Growth exhibited by non – living objects is by accumulation of material on the surface

4. A multicellular organism grows by cell division

97 A plant differs from an animal mainly in

- 1. Protoplasm2. Vital activities3. Nutrition4. Reproduction
- 98 Binomial nomenclature means that every organism has
 - 1. Two names one scientific and other popular

2. One scientific name consisting of a generic and specific epithet

- 3. One name given by two scientists
- 4. Two names, one latinized and other of the person

99 The sum total of chemical reactions occurring in our body is called

- 1. Metabolism2. Homeostasis3. Irritability4. Catabolism
- 100 Match the items in column I with those in column II and choose the correct option

	Column I		Column II		
	Α	Ascus	Ι	Spirulina	
	В	Basidium	Π	Penicillium	
	С	Protista	III	Agaricus	
	D	Cyanobacteria	IV	Euglena	
	Ε	Animalia	V	Sponges	
1. A	1. A – II, B – III, C – IV, D – V, E – I				

- 2. A I, B II, C III, D V, E IV
- 3. A II, B V, C III, D I, E IV
- 4. A II, B III, C IV, D I, E V

101 Which of the following is the defining feature of all the living organisms?

- 1. Growth 2. Metabolism
- 3. Reproduction 4. Self consciousness
- 102 Which one of the following is a saprophytic protist?
 - 1. Desmid2. Slime mould

3. Euglena4. Gonyaulax

- **103** Biological organization starts with
 - 1. Cellular level
 - 2. Organism level
 - 3. Atomic level
 - 4. Sub microscopic molecular level

104 Identify the following figures A, B and C

- 1. A Euglena, B Paramecium, C Agaricus
- 2. A Euglena, B Planaria, C Agaricus
- 3. A Planaria, B Paramecium, C Agaricus
- 4. A Euglena, B Paramecium, C Aspergillus

105 Find out the correct statement

1. In lichens, the algal component is called phycobiont and fungal component is known as mycobiont, which are heterotrophic and autotrophic respectively

2. Viroid contains RNA of low molecular weight and protein coat.

- 3. A virus contains both RNA and DNA
- 4. Viruses are obligatory parasites

106 Identify the correct sequence of taxonomic categories

- 1. Species order kingdom phylum
- 2. Species family genus class
- 3. Genus species order phylum
- 4. Species genus order phylum

107 Who is known as 'Father of Taxonomy'?

- 1. Huxley2. Linnaeus
- 3. Theophrastus 4. None of these

108 Naming of crop plant species is determined by

- 1. International union of biologists
- 2. International code of Botanical Nomenclature (ICBN)
- 3. International association of plant breeders
- 4. International code of nomenclature of cultivated plants
- 109 The term systematic is derived from Latin word 'Systema' which means

- 1. Classification of organisms
- 2. Nomenclature of organisms
- 3. Diversity of organisms along with ontogeny
- 4. Systematic arrangement of organisms
- 110 Which one of the taxonomic aids can give comprehensive account of complete complied information of any one genus or family at a particular time
 - 1. Taxonomic key2. Flora
 - 3. Herbarium
- 4. Monograph
- 111 The correct series of procedure in classification of organism is
 - 1. Classification, nomenclature, identification, characterization
 - 2. Nomenclature, identification, classification, characterization
 - 3. Characterization, identification, classification, nomenclature
 - 4. Characterization, identification, nomenclature, classification
- 112 Which one of the following is correct as per binomial nomenclature?
 - 1. Mangifera Indica L 2. Mangiferaindica Linn
 - 3. Mangifera indica L 4. Mangifera indica Linn
- 113 Given below is the diagram of a dividing bacterium. In which of the following option (1 4) all parts labeled as A, B and C are identified correctly?

- 1. A ss DNA; B Cell wall; C Glycocalyx 2. A – ds DNA; B – Cell wall; C – Cell membrane
- 3. A DNA; B Cell membrane; C Cell wall
- 4. A Circular DNA; B Plasma membrane; C Cellulosic cell wall

114 Which of the following pair of character unexceptionally present in all living organism and absent in no – living objects?

- 1. Consciousness, reproduction
- 2. Metabolism, cellular organization
- 3. Growth, reproduction
- 4. Reproduction, metabolism

115 Match the column I with column II

Column I			Column II			
Α	Indian Botanical Garden	Ι	Lucknow			
B	Royal Botanical Garden	Π	Italy			
С	National Botanical Research	III	Howrah			
	Institute					
D	Villa Taranto	IV	Kew			
]	1. A - III, B - II, C - I, D - IV					
	2. $A - I, B - IV, C - III, D - II$					
3	3. A - II, B - IV, C - III, D - I					
4	4. A – III, B – IV, C – I, D – II					

- 116 Organisms with heterotrophic nutrition, mulitcellular body organization with loose tissue are placed under which kingdom of Whittaker's system?
 - 1. Monera2. Protista3. Fungi4. None of these

117 Which one of the taxonomical aids is useful in providing information for identification of names of species found in an area?

- 1. Flora 2. Manual
- 3. Monograph 4. Catalogue
- **118** The number of species that are known and described ranges between
 - 1.1-1.02 million species
 - 2. 1.7 1.8 million species
 - 3.0.2 0.5 million species
 - 4. 1 1.5 million species

119 Isolated metabolic reactions in – vitro are

- 1. Living things but not living reactions
- 2. Neither living things nor living reactions

3. Biological reactions as they involve biochemicals

4. Biological reactions as they do not involve enzymes

- 120 Which of the following group does not represent the aggregates of closely related families?
 - 1. Carnivora2. Polymoniales3. Primata4. Felidae

121 Lion, leopard and tiger represents

- 1. Same species
- 2. Different subspecies of same species
- 3. Different species of same genus
- 4. Different species of different genera

www.vagusneetacademy.com

122 Taxonomical studies of all known organism have led to the development of hierarchy involving obligate categories 1.71.72.53.44.3	1 2 3
123 Which of the following organisms represent	4
1. Mammals, insects2. Plants, Animals3. Wheat, Plants4. Dogs, Cats	130
 124 Cyanobacteria are 1. Bacteria using cyanide for nutrition 2. Coloured fungi 	
3. Algae having blue – green cells4. Viruses affecting bacterial growth	
125 Which of the following cell organelle is absent in bacterial cell	
3. Golgi complex 4. Mesosome	131
126 The classification of Linnaeus was mainly based on1. Sepals2. Carpels3. Petals4. Stamens	
127 Choose the correct names of the different bacteria according to their shapes	132
A – Bacilli, B – Bacilli, C – Spirilla, D – Vibrio 2. A – Bacilli, B – Cocci, C – Spirilla, D – Vibrio 3. A – Sirilla, B – Bacilli, C – Cocci, D – Vibrio 4. A – Spirilla, B – Vibrio, C – Cocci, D – Bacilli	133
 128 Which pair of the following belongs to Basidiomycetes? 1. Puffballs and Claviceps 2. Pegige and Alternation 	134
2. Feziza and Anemaria3. Mucor and Mushrooms4. Mushrooms and puffballs	
129 The figure given below shows the structure of a bacteriophage. Identify its parts labeled as A, B, C and D	135

	Α	В	С	D
1	Tail fibres	Head	Sheath	Collar
2	Sheath	Collar	Head	Tail fibres
3	Head	Sheath	Collar	Tail fibres
4	Collar	Tail fibres	Head	Sheath

	130 Consider the following statements					
	I. Genus comprises a group of related species					
	II Taxon represents a taxonomic group of					
	individual organisms					
	III. Family comprises a group of related gapara					
	III. Failing comprises a group of related general					
	Iv. Taxonomic category class includes related					
	orders.					
	Of the above statements					
	1. I, II & IV are correct					
a	2. II & IV are correct					
5	3. I, III & IV are correct					
	4. II, III & IV are correct					
10	131 Which of the following is not a character of					
	protista?					
y	1 Protists are prokaryotic					
	2 Some profists have cell walls					
	3. Mode of nutrition is both autotrophic and					
	beteretrophic					
	A Membrane bound ensemelles are present in cells					
t	4. Memorane bound organeties are present in cens					
2						
1	132 Specialized cells called heterocysts are					
	present in					
	1. Dinoflagellates 2. Chrysophytes					
	3. Euglenoids 4. Cyanobacteria					
	133 Which of the following is a flagellated					
	protozoan?					
	1. Amoeba 2. Entamoeba					
	3. Plasmodium 4. Trypanosoma					
D						
1	134 The phylogenetic system of classification was					
	put forth by					
	1. Carolus Linnaeus					
	2. George Bentham and Joseph Dalton Hooker					
	3. Theophrastus					
	4 Adolf Engler and Kari Pranti					
Δ	. Adon Englor and Kuri Franti					

135 Mycorrhiza is helpful to Pinus in

1. Synthesis of food

10

- 2. Getting nutrients and water from soil
- 3. Providing resistance against different regulators
- 4. Increasing the fertility of soil
- 136 Which of the following option is correct? I. Mycoplasma has no cell wall

II. Mycoplasma is the smallest living organism III. Mycoplasma cannot survive with O_2 .					Ε
IV. Mycoplasma are pathogenic in animals and					
	pia V. VI ba fro	True sexuality True sexuality . A sort of cterium by ad om one bacteri	y is not sexual opting um to t	t found in bacteria reproduction occurs in a primitive DNA transfer the other	
	1.	All I II IV V & V	л	2. Only III 4. I. III and VI	
13	37 ch	Taxonomic k aracters gene	xey is l rally i	based on the contrasting n a pair and its each	
	1.	Monograph		2. Grade	1
	3.	Couplet		4. Lead	2
13	58 fea 1. ani	Which one of ature of Chrys They are parast imals	f the fo l ophytes titic for	llowing is a characteristic s? ms which cause diseases in	
	2.	They have a pro	otein ric	ch layer called pellicle	$\frac{\text{of}}{2}$
	3. wi	th silica	aestruc	tible wall layer deposited	of
	4.	They are comm	nonly ca	alled dinoflagellates	3.
10		T XX/1 • / / 1			car
13	59 nr	In Whittak	er's sy ng to th	ystem of classification,	4. ext
	1 .	Monera	2. Prot	tista	
	3.	Animalia		4. Fungi	142
14		Select the contract the contract the contract the select the contract the contract the select the s	orrect o footu	taxonomic and given in	3.
	0	Column I	Colun	nn II	
	A	Herbarium	Ι	Includes those	143
				specimens which	res
				can be easily	A.
				classified on their	B.
				character	C.
	B Botanical II Preserved specimens on				D.
		garden		sheets become a	sta
				store house for	
	0			future use	5.
	C	Museum		Generally set up in educational institutos	144
	D	Zoological	IV	Includes those animals	or
	~	Park		which are identified	II.
				based on their	
				aggregate of	
				characters	spe

E	Key	V	All animals provided			
			similar conditions to			
			their natural			
			habitat			
		VI	Includes animals of			
			related orders			
		VII	Includes collection of			
			living plants for			
			reference			
		VIII	It identifies animals			
			and plants on the			
			basis of their			
			similarities and			
	dissimilarities					
1. A - I, B - II, C - VIII, D - V, E - III						
2.	2. A – III, B – I. C – IV, D – II, E – V					
3.	3. A - II, B - VII, C - III, D - V, E - VIII					

4. A - II, B - III, C - VII, D - I, E - IV

141 In prokaryotes, chromatophores are

- 1. Specialised granules responsible for colouration of cells
- 2. Structures responsible for organizing the shape of the organism
- 3. Inclusion bodies lying free inside the cells for carrying out various metabolic activities

4. Internal membrane systems that may become extensive and complex in photosynthetic bacteria

142 Most common mode of reproduction in bacteria is by

- 1. Binary fission 2. Sporulation
- 3. Budding 4. Genetic recombination
- 143 Consider the following statements with respect to characteristic features of the kingdom A. In animalia the mode of nutrition is autotrophic

B. In monera the nuclear membrane is present

C. In protista the cell type is prokaryotic

D. In plantae the cell wall is present of the above statements

- A alone is correct 2. B alone is correct
 - C alone is correct 4. D alone is correct

144 I. Unicellular, colonial, filamentous, marine or terrestrial forms

II. The colonies are surrounded by a gelatinous sheath

III. Some can fix atmospheric nitrogen in specialized cells called heterocysts

IV. They often form blooms in water bodies

- 1. Archaebacteria
- 2. Cyanobacteria
- 4. Dinoflagellates 3. Chrysophytes
- Identify the given figure and match its 145 correct characteristics

1. Zoological Park - A place where plants were kept under human care

2. Museum – Includes collection of preserved plants and animal specimens

3. Herbarium – Store house where plant specimen are collected, dried, pressed and preserved on sheets

4. Botanical garden – Plants specimens are collected, preserved along with labeling indicating its scientific name

146 Mesosomes are found in

- 1. Yeast 2. Acetabularia
- 3. Bacteria 4. Chara

Match column I with Column II and choose 147 the correct option

	Column I	Column II			
Α	Erst Mayr	Ι	Discovered viroids		
B	Whittaker	Π	Gave the name virus		
С	Pasteur	III.	Proposed Five		
			Kingdom		
			classification		
D	Diener	IV	Darwin of the 20 th		
			centrury		

- 1. A IV, B III, II, D I
- 2. A III, B IV, C II, D I
- 3. A II, B III, C IV, D I
- 4. A I, B II, C III, D IV

148 Nuclear material without nuclear membrane, is observed in

- 1. Bacteria and cyanobacteria
- 2. Cyanobacteria and red algae
- 3. Bacteria and green algae
- 4. Mycoplasma and green algae

149 **Chemosynthetic bacteria**

1. Oxidise various organic substances

- 2. Are most abundant in nature
- 3. Oxidise substances like nitrites, ammonia, iron etc
- 4. Reduce various inorganic substances

150 Pick out the wrong statement

- 1. Lichens are symbiotic associations
- 2. Lichens are very good pollutions indicators
- 3. Lichens do not grow in unpolluted areas

4. The algal component of lichen is known as phycobiont

An example for artificial of 151 system classification is that of 2. Bessey

- 1. Bentham and Hooker 3. Linnaeus system
- 4. Hutchinson
- 152 Which of the following are the characters of dinoflagellates?

A. Planktonic golden yellow algae with soap box like structure

B. Marine red biflagellated protistans

C. Appear yellow, green, brown, blue and red in colour

- D. Billagellated organisms with pellicle.
- E. Saprophytic (or) parasitic unicellular forms
- 2. B, D & E only 1. A, B & C only
- 3. B & C only 4. B & E only
- Reproduction is commonly asexual which 153 occurs through cell division and resulting in red tide formation by
 - 1. Gonyaulax 2. Ceratium 3. Euglenoids
 - 4. Slime moulds

154 Site of respiration in Bacteria is

- 1. Mesosome 2. Vacuole
- 3. Nucleoid 4. Mitochondria
- 155 Diatoms are used in brewing industry because
 - 1. Its mode of nutrition is holophytic
 - 2. Its cell wall has two haves
 - 3. Its cell wall has rough and gritty nature
 - 4. Of presence of leucosin as reserve food

156 Instead of cell wall, euglenoids have a protein rich layer called ____, which makes their body ____

- 1. Glycocalyx, flexible 2. Pellicle, flexible
- 3. Theca, rigid
- 4. Frustule, rigid

157 Which one of the following option is correct?	1. Mode of nutrition2. Reproduction3. Pigmentation4. Thallus organization
	 164 The characteristic photosynthetic pigments present in blue green algae are 1. Chlorophyll-a, phycocyanin and phycoerythrin
	2. Chlorophyll -a and chlorophyll -b
I. A – Cell wall, B – cell membrane, C –	A Chlorophyll -b phycoerythrin and carotenes
Heterocyst, $D = DNA$, $E = Muchagenous sheath2 A Coll well B Coll membrane C DNA C$	4. Chlorophyn -0, phycocrythin and carotenes
2. $A = Cell wall, B = Cell internolatie, C = DNA, L$ = Heterocyst E = Mucilagenous sheath	165 Viroids
3 A = Mucilagenous sheath B = Cell membrane (A. Discovered by T.O. Diener
– DNA D – Heterocyst E - Cell wall	B. Are low molecular weight RNA molecules
$4 \text{ A} - \text{Cell membrane } \text{B} - \text{Cell wall } \text{C} - \text{DNA } \Gamma$	C. Are causal entities of tobacco mosaic disease
– Heterocyst, E – Mucilagenous sheath	D. Are free RNA particles lacking protein coat
inconce you, 2 internagence as showing	1. A, B & D are correct
158 Fungi imperfect shows	2. A, C & D are correct
1. Septate mycelium	3. A, B & C are correct
2. Proonged diakaryophase	4. All are correct
3. Zoospore formation	
4. Advance sex organs	166 In classification system given by whittaker
	kingdom protista includes
159 Archaeba <mark>ceria differ f</mark> rom other bacteria ir	1. All photosynthetic unicelled organisms
having	2. All saprozoic unicelled organisms
1. Double stranded DNA	3. All holozoic unicelled organisms
2. A different cell wall structure	4. Nutritionally diverse unicelled organisms
3. Autotrophic mode of nutrition	
4. Nuclear membrane	167 Phosphate absorption is the major function
	of
160 Mycoplasma are organisms that completely	1. Actinomycetes 2. Lichens
lack	3. Mycorrhiza 4. Spirochaetes
1. Nuclear membrane as well as plasma membrane	169 In month of the former of the second
2. Cell wall and cell membrane	168 In members of deuteromycetes, asexual
3. Plasma membrane and flagella	1 Pasidia 2 Sporengiospores
4. Cell wall and can survive without oxygen	1. Basidia 2. Sporaligiospores 3. Conidia 4. Zoospores
	3. Collidia 4. Zoospores
161 Reproduction also cannot be an all inclusive	169 In class basidiomycetes the site of
1. Voort and Hydra multiply by fragmentation	karvogamy and mejosis is
2. Protoname of moss multiplies by hinary fission	1 Basidiospore 2 Zygospore
2. It is synonymous to growth in unicellular	3 Oospore 4 Basidium
organisms	
4 Some organisms like worker bees and mules are	170 Statement – 1: Taxon and category are
interfertile	different things
interiertite	Statement – 2: Category shows hierarchical
162 The basic unit of classification	classification
1. Species 2. Genus	1. Statement -1 and statement -2 are true and
3. Family 4. Phylum	statement – 2 is a correct explanation for
	statement – 1
163 Which of the following criteria for five	2. Statement -1 and statement -2 are true and
kingdom classification was not used by	statement -2 is not a correct explanation for
Whittaker?	statement – 1

- 3. Statement -1 is true and statement -2 is false 4. Both the statements are false
- 171 Which one of the following taxonomic category of hierarchy will have more specific and general characters respectively

A. Class B. Family C. Genus D. Order F. Species

D. Order	L. Species
1. E & D	2. C & A
3. E & B	4. E & A

- 172 Find incorrect statements w.r.t slime moulds A. Spore dispersal by wind
 - B. Somatic body and spores, both are wall less
 - C. Mostly parasitic
 - D. Unicellular eukaryotes
 - 1. A, D 2. A, C

3. B, C	4 <mark>. C, D</mark>
---------	-----------------------

173 Match the following and choose the correct combination from the options given

Colu	umn I	Column II		
(common		(Taxonomic category		
name)		order)		
Α	Wheat	Ι	Primata	
B	Mango	Π	Diptera	
С	Housefly	III	Sapindales	
D	Man	IV	Poales	

- 1. A I, B II, C IV, D III
- 2. A IV, B III, C II, D I
- 3. A II, B IV, C I, D III
- 4. A III, B IV. C II, D I

174 Chief producers in the oceans are

- 1. Dinoflagellates2. I3. Euglenoids4. I
 - 2. Diatoms 4. Pyrrophytes
- 175 Identify the labels A and B in the figure given below

1. A – ss DNA; B – Head 2. A – ds RNA; B – Capsid

- 3. A ss RNA; B Capsid
- 4. A ss DNA; B Capsid
- 176 Potato spindle tuber disease is caused by
 - 1. Virus 2. Virusoid
 - 3. Virion4. Viroid
- 177 Select the correct statement among the following
 - 1. All organisms have self consciousness
 - 2. Human beings are the only organism who are self conscious
 - 3. Metabolic reactions cannot be demonstrated outside the body in cell free systems

4. Prokaryotes cannot sense and respond to environmental cues

178 Which among the following are incapable of reproduction?

- 1. Mules
- 2. Worker bees
- 3. Slime moulds
- 4. Mules & worker bees

179 Which one of the following fungi is extensively used in biochemical and genetic research?

- 1. Yeast2. Penicillium3. Neurospora4. Mucor
- 180 The following are twelve members of fungi Mucor, Rhizopus, Albugo, Alternaria, Colletotrichum, Agaricus, Asoergillus, Ustilago, Neurospora, puccinia, Claviceps and trichoderma. Select the option in which the twelve members are distributed correctly to the four groups of fungi

	Phycomy cetes	Ascomy cetes	Basidiomy cetes	Deuteromy cetes
1	4	3	3	2
2	3	4	2	3
3	3	3	3	3
4	2	4	3	3

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK